Практическое пособие для слесаря газовогохозяйства

Практическое пособие для слесаря газовогохозяйства

среда, 28 марта 2018 г.

Комбинированные горелки

  Горелки, работающие одновременно или раздельно на газе и мазуте или на газе и угольной пыли, называются комбинированными. Их применяют при перебоях в подаче газа, когда необходимо срочно перейти на другой вид топлива; когда газовое топливо не обеспечивает необходимого температурного режима топки; подача газа на данный объект производится только в определенное время (ночью) для выравнивания суточной неравномерности газопотребления.
  Наибольшее распространение получили газомазутные горелки с принудительной подачей воздуха. Горелка состоит из газовой, воздушной и жидкостной частей. Газовая часть представляет собой полое кольцо, имеющее штуцер для подвода газа и восемь трубочек для распыления газа.
  Жидкостная часть горелки состоит из мазутной головки и внутренней трубки, заканчивающейся форсункой. Подача мазута в горелку регулируется вентилем. Воздушная часть горелки состоит из корпуса, завихрителя, воздушной заслонки, с помощью которой можно регулировать подачу воздуха. Завихритель служит для лучшего перемешивания струи мазута с воздухом. Давление воздуха 2...3 кПа, давление газа до 50 кПа, а давление мазута до 0,1 МПа.
  Применение комбинированных горелок дает более высокий эффект, чем одновременное использование газовых горелок и мазутных форсунок или газовых и пылеугольных горелок.
  Комбинированные горелки необходимы для надежной и бесперебойной работы газоиспользующих установок крупных промышленных предприятий, электростанций и других потребителей, для которых перерыв в работе недопустим.
  Рассмотрим принцип действия комбинированной пылегазовой горелки с центральной подачей газа. При работе на угольной пыли в топку по кольцевому каналу центральной трубы подается смесь первичного воздуха с угольной пылью, а вторичный воздух поступает в топку через улитку.
  В качестве резервного топлива служит мазут, в этом случае в центральной трубе устанавливается мазутная форсунка. При переводе горелки на газовое топливо мазутную форсунку заменяют кольцевым каналом, по которому подается газовое топливо.
  В центральной части канала установлена труба с чугунным наконечником. В наконечнике 24 косые щели, через которые выходит газ, пересекающийся с потоком закрученного воздуха, выходящего из улитки. В усовершенствованных конструкциях горелок в наконечнике вместо щелей предусмотрено 115 отверстий диаметром 7 мм. В результате скорость выхода газа увеличилась почти в два раза (150 м/с).
  В новых конструкциях горелки применяется периферийная подача газа, при которой газовые струйки, имеющие более высокую скорость, чем воздушные, пересекают закрученный поток воздуха, движущийся со скоростью 30 м/с, под прямым углом. Такое взаимодействие потоков газа и воздуха обеспечивает быстрое и полное их перемешивание, в результате чего газовоздушная смесь сгорает с минимальными потерями.

суббота, 24 марта 2018 г.

Горелки с принудительной подачей воздуха

  У горелок с принудительной подачей воздуха процесс образования газовоздушной смеси начинается в самой горелке и завершается в топке. Газ сгорает коротким и несветящимся пламенем. Воздух, необходимый для сгорания газа, подается в горелку принудительно с помощью вентиляторов. Подача газа и воздуха производится по отдельным трубам.
  Горелки с принудительной подачей воздуха часто называют двухпроводными и смесительными, так как в них происходит полное перемешивание газовоздушной смеси.
  Наиболее распространенные конструкции этих горелок работают на низком давлении газа и воздуха. Однако некоторые конструкции можно использовать и при среднем давлении газа.
  Горелки предназначены для установки в топках котлов и других агрегатах с небольшим объемом топки, а также в нагревательных и сушильных печах.
  Газ давлением до 1200 Па поступает в сопло и выходит из него через восемь отверстий диаметром 4,5 мм. Отверстия расположены под углом 30 градусов С к оси горелки. В корпусе горелки устроены специальные лопатки, придающие потоку воздуха вращательное движение. Таким образом, газ в виде мелких струек пересекается в закрученном потоке воздуха и создается хорошо перемешанная газовоздушная смесь. Горелка заканчивается керамическим тоннелем, имеющим запальное отверстие.
  Основные достоинства горелок: возможность сжигания большого количества газа; широкий диапазон регулирования производительности горелок; возможность подогрева воздуха и газа до температур, превышающих температуру воспламенения.
  В существующих разнообразных конструкциях горелок интенсификация процесса образования газовоздушной смеси достигается следующими способами: расчленением потоков газа и воздуха на мелкие потоки, в которых проходит смесеобразование; подачей газа в виде мелких струек под углом к потоку воздуха; закручиванием потока воздуха различными приспособлениями, встроенными внутрь горелок.

пятница, 23 марта 2018 г.

Горелки инфракрасного излучения

  Наиболее распространены горелки с насадками правильной геометрической формы. Огнеупорные насадки таких горелок состоят из керамических плтиток размером 65х45х12 мм. Беспламенные горелки называют также горелками инфракрасного излучения.
  Все тела - источники теплового излучения, возникающего за счет колебательного движения атомов. При излучении тепловая энергия веществ превращается в энергию электромагнитных волн, которые распространяются от источника со скоростью, равной скорости света. Эти электромагнитные волны, распространяясь в окружающем пространстве, наталкиваются на различные предметы и легко превращаются в тепловую энергию. Величина ее зависит от температуры излучающих тел. Каждой температуре соответствует определенный интервал длин волн, излучаемых телом. В данном случае передача теплоты излучением происходит в инфракрасной области спектра, а горелки, работающие по этому принципу, называются горелками инфракрасного излучения.
  Через сопло газ поступает в горелку и инжектирует весь воздух, необходимый для полного сгорания газа. Из горелки газовоздушная смесь поступает в сборную камеру и далее направляется в огневые отверстия керамической плитки. Во избежание проскока пламени диаметр огневых отверстий должен быть меньше критической величины и составлять 1,5 мм. Выходящая из огневых камер газовоздушная смесь поджигается при малой скорости ее вылета, чтобы избежать отрыва пламени. В дальнейшем скорости вылета газовоздушной смеси можно увеличить (полностью открыть кран), так как керамические плитки нагреваются до 1000 градусов С и отдают часть теплоты газовоздушной смеси, что приводит к увеличению скорости распространения пламени и предотвращению его отрыва.
  Керамические плитки имеют около 600 огневых цилиндрических каналов, что составляет около 40 % поверхности плиток.
  Плитки соединяют друг с другом специальной замазкой, состоящей из смеси шамотного порошка с цементом.
  Если инфракрасные горелки работают на газе среднего давления, то применяют специальные плиты из жаропрочных пористых материалов. Вместо цилиндрических каналов у них узкие искривленные каналы, которые заканчиваются расширяющимися камерами сгорания.
  При сжигании газа в многочисленных каналах различных насадок происходит нагрев их внешних поверхностей до температуры около 1000 градусов С. В результате поверхности приобретают оранжево-красный цвет и становится источниками инфракрасных лучей, которые поглощаются различными предметами и вызывают их нагрев.
  У горелок ГИИ-1 имеются 21 керамическая плитка, рефлектор и распределительная коробка. С помощью горелок ГИИ можно обогревать помещения и различное оборудования. Горелки используют и для обогрева открытых площадок (спортивные площадки, кафе, помещения летнего типа и т.д.).
  Горелку ГК-1-38 успешно применяют для подогрева строящихся стен и штукатурки, обогрева людей, работающих в зимних условиях. Горелка может работать на природном и сжиженном газах.

четверг, 22 марта 2018 г.

Беспламенная панельная горелка

  Газовоздушная смесь подогревается от раскаленных стенок канала. В местах расширения каналов и вблизи от плохо обтекаемых тел создаются зоны задержки горячих продуктов сгорания. Такие зоны - устойчивые источники постоянного подогрева и зажигания газовоздушной смеси. Поступающий в сопло из газопровода газ инжектирует необходимое количество воздуха, регулируемое регулятором первичного воздуха. Образовавшаяся газовоздушная смесь через инжектор поступает в распределительную камеру, проходит по ниппелям и поступает в керамические тоннели. В этих тоннелях происходит сжигание газовоздушной смеси. Распределительная камера от керамических призм теплоизолирована  слоем диатомовой крошки, что сокращает теплоотвод из реакционной зоны.
  Беспламенное сжигание газа имеет следующие преимущества: полное сгорание газа; возможность сжигания газа при малых избытках воздуха; возможность достижения высоких температур горения; сжигание газа с высоким тепловым напряжением объема горения; передача значительного количества теплоты инфракрасными лучами.
  Существующие конструкции беспламенных горелок с огнеупорными насадками по конструкции их огневой части подразделяют на горелки с насадками, имеющие каналы неправильной геометрической формы; горелки с насадками, имеющие каналы правильной геометрической формы; горелки, у которых пламя стабилизируется на огнеупорных поверхностях топки.

вторник, 20 марта 2018 г.

Горелки с полным предварительным смешением газа с воздухом

  Инжекция всего воздуха,  необходимого для полного сгорания газа, обеспечивается повышенным давлением газа. Горелки полного смешения газа работают в диапазоне давлений от 5000 Па до 0,5 МПа. Их называют инжекционными горелками среднего давления и применяют в основном в отопительных котлах и для обогрева промышленных печей. Тепловая мощность горелок обычно не превышает 2 МВт. Основные трудности повышения их мощности - сложность борьбы с проскоком пламени и громоздкость смесителей.
  Эти горелки дают малосветящийся факел, что уменьшает количество радиационной теплоты, передаваемой нагреваемым поверхностям. Для увеличения количества радиационной теплоты эффективно применение в топках котлов и печей твердых тел, которые воспринимают теплоту от продуктов горения и излучают ее на тепловоспринимающие поверхности. Эти тела называют вторичными излучателями. В качестве вторичных излучателей использует огнеупорные стенки тоннелей, стенки топок, а также специальные дырчатые перегородки, установленные на пути движения продуктов сгорания.
  Горелки с полным предварительным смешением газа с воздухом подразделяют на два типа: с металлическими стабилизаторами и огнеупорными насадками.
  Инжекционная горелка конструкции Казанцева (ИГК) состоит из регулятора первичного воздуха, форсунки, конфузора, смесителя, насадка и пластинчатого стабилизатора.
  Регулятор первичного воздуха горелки одновременно выполняет функции глушителя шума, который создается за счет повышенных скоростей движения газовоздушной смеси. Пластинчатый стабилизатор обеспечивает устойчивую работу горелки без отрыва и проскока пламени в широком диапазоне нагрузок. Стабилизатор состоит из стальных пластин толщиной 0,5 мм при расстоянии между ними 1,5 мм. Пластины стабилизатора стягивают между собой стальными стержнями, которые на пути движения газовоздушной смеси создают зону обратных токов горячих продуктов сгорания и непрерывно поджигают газовоздушную смесь.
  В горелках с огнеупорными насадками природный газ сгорает с образованием малосветящегося пламени. В связи с этим передача теплоты излучением от факела горящего газа оказывается недостаточной. В современных конструкциях газовых горелок значительно повысилась эффективность использования газа. Малая светимость факела газа компенсируется излучением раскаленных огнеупорных материалов при сжигании газа методом беспламенного горения.
  Газовоздушная смесь у этих горелок приготовляется с небольшим избытком воздуха и поступает в раскаленные огнеупорные каналы, где она интенсивно нагревается и сгорает. Пламя не выходит из канала, поэтому такой процесс сжигания газа называется беспламенным. Это название условное, так как в каналах пламя имеется.

понедельник, 19 марта 2018 г.

Инжекционные горелки

  Горелки, в которых образование газовоздушной смеси происходит за счет энергии струи газа, называют инжекционными. Основной элемент инжекционной горелки - инжектор, подсасывающий воздух из окружающего пространства внутрь горелок.
  В зависимости от количества инжектируемого воздуха горелки могут быть с неполной инжекцией воздуха и с полным предварительным смешением газа с воздухом.
  Горелки с неполной инжекцией воздуха. К фронту горения поступает только часть необходимого для сгорания воздуха, остальной воздух поступает из окружающего пространства. Такие горелки работают при низком давлении газа. Их называют инжекционными горелками низкого давления.
  Основными частями инжекционных горелок являются регулятор первичного воздуха, форсунка, смеситель и коллектор.
  Регулятор первичного воздуха представляет собой вращающийся диск или шайбу и регулирует количество первичного воздуха, поступающего в горелку. Форсунка служит для превращения потенциальной энергии давления газа в кинетическую, т.е. для придания газовой струе такой скорости, которая обеспечивает подсос необходимого воздуха. Смеситель горелки состоит из трех частей: инжектора, конфузора и диффузора. Инжектор создает разрежение и подсос воздуха. Самая узкая часть смесителя - конфузор, выравнивающий струю газовоздушной смеси. В диффузоре происходят окончательное перемешивание газовоздушной смеси и увеличение ее давления за счет снижения скорости.
  Из диффузора газовоздушная смесь поступает в коллектор, который и распределяет ее по отверстиям. Форма коллектора и расположение отверстий зависят от типа горелок и их назначения.
  Распределительный коллектор горелок емкостных водонагревателей имеет форму окружности; у горелок проточных водонагревателей коллектор состоит из параллельно расположенных трубок; у агрегатов, имеющих удлиненную топку, коллектор удлиненной формы; у горелок для чугунного котла коллектор в виде прямоугольника с большим числом мелких отверстий.
  Инжекционные горелки низкого давления имеют ряд положительных качеств, благодаря которым их применяют в бытовых газовых приборах, а также в газовых приборах для предприятий общественного питания и других коммунально-бытовых потребителей газа. Инжекционные горелки используют также в чугунных отопительных котлах.
  Основные преимущества инжекционных горелок низкого давления: простота конструкции, устойчивая работа горелок при изменении нагрузок; надежность и простота обслуживания; бесшумность работы; возможность полного сжигания газа и работа на низких давлениях газа; отсутствие подачи воздуха под давлением.
  Важная характеристика инжекционных горелок неполного смешения - коэффициент инжекции - отношение объема инжектируемого воздуха к объему воздуха, необходимого для полного сгорания газа. Так, если для полного сгорания 1 м.куб. газа необходимо 10 м.куб. воздуха, а первичный воздух составляет 4 м.куб., то коэффициент инжекции равен 4:10=0,4.
  Характеристикой горелок является также кратность инжекции - отношение первичного воздуха к расходу газа горелкой. В данном случае, когда на 1 м.куб. сжигаемого газа инжектируется 4 м.куб. воздуха, кратность инжекции равна 4.
  Достоинство инжекционных горелок - это их свойство саморегулирования, т.е. поддержание постоянной пропорции между количеством подаваемого в горелку газа и количеством инжектируемого воздуха при постоянном давлении газа.
  Пределы устойчивой работы инжекционных горелок ограничены возможностями отрыва и проскока пламени. Это значит, что увеличить или уменьшить давление газа перед горелкой можно только в определенных пределах.

воскресенье, 18 марта 2018 г.

Диффузионные горелки

  В диффузионные горелки воздух, необходимый для сгорания газа, поступает из окружающего пространства к фронту факела за счет диффузии.
  Такие горелки применяют обычно в бытовых приборах. Их можно использовать также при увеличении расхода газа, если необходимо распределить пламя по большой поверхности. Во всех случаях газ подается в горелку без примеси первичного воздуха и смешивается с ним за пределами горелки. Поэтому иногда эти горелки называют горелками внешнего смешения.
  Наиболее простые по конструкции диффузионные горелки представляют собой трубку с высверленными отверстиями. Расстояние между отверстиями выбирают с учетом скорости распространения пламени от одного отверстия к другому. Эти горелки имеют небольшие тепловые мощности, и их применяют при сжигании природных и низкокалорийных искусственных газов под небольшими водонагревательными устройствами.
  К промышленным горелкам диффузионного типа относят подовые щелевые горелки. Обычно они представляют собой трубу диаметром до 50 мм, в которой просверлены отверстия диаметром до 4 мм в два ряда. Коллектор горелки размещают над колосниковой решеткой в кирпичном канале. Канал представляет собой щель в поде котла, откуда и название горелок - подовые щелевые.
  Из горелок газ выходит в топку, куда из-под колосников поступает воздух. Газовые струйки направляются под углом к потоку воздуха и равномерно распределяется по его сечению. Процесс смешения газа с воздухом осуществляется в специальной щели, выполненной из огнеупорного кирпича. Благодаря такому устройству усиливается процесс смешивания газа с воздухом и обеспечивается устойчивое зажигание газовоздушной смеси.
  Колосниковую решетку закладывают огнеупорным кирпичом и оставляют несколько щелей, в которых размещают трубы с просверленными отверстиями для выхода газа. Воздух под колосниковую решетку подается вентилятором или в результате разрежения в топке. Огнеупорные стенки щели - стабилизаторы горения - предотвращают отрыв пламени и одновременно повышают процесс теплоотдачи в топке.
  При раздельной подаче газа и воздуха в диффузионных горелках можно подогревать воздух, что обеспечивает получение высоких температур в топке.

пятница, 16 марта 2018 г.

Газовые горелки. Классификация

  Устройство, обеспечивающее устойчивое сжигание газообразного топлива и регулирование процесса горения, называется газовой горелкой. Основные функции газовых горелок: подача газа и воздуха к фронту горения газа, смесеобразование, стабилизация фронта воспламенения, обеспечение требуемой интенсивности процесса горения газа.
  По методу сжигания газа все горелки можно разделить на три группы:

  • без предварительного смешения газа с воздухом - диффузионные;
  • с неполным предварительным смешением газа с воздухом - диффузионно-кинетические;
  • с полным предварительным смешением газа с воздухом - кинетические.
  Кроме того, горелки можно классифицировать по способу подачи воздуха, расположению горелки в топочном пространстве, излучающей способности горелки, давлению газа.
  Широкое распространение имеет классификация горелок по способу подачи воздуха. По этому признаку горелки подразделяют следующим образом:

  • бездутьевые, у которых воздух поступает в топку за счет разрежения в ней;
  • инжекционные, в которых воздух засасывается за счет энергии струи газа;
  • дутьевые, у которых воздух подается в горелку или топку с помощью вентилятора.
  Горелки могут работать при различных давлениях газа: низком - до 5000 Па, среднем - от 5000 Па до 0,3 МПа и высоком - более 0,3 МПа. Наибольшее распространение имеют горелки, работающие на низком и среднем давлениях газа.
  Важная характеристика горелки - ее тепловая мощность, кДж/ч.
  Различают максимальную, минимальную и номинальную тепловые мощности газовых горелок. Максимальная тепловая мощность достигается при длительной работе горелки с большим расходом газа и без отрыва пламени. Минимальная тепловая мощность возникает при устойчивой работе горелки при наименьших расходах газа без проскока пламени. Номинальная тепловая мощность горелки соответствует режиму работы с номинальным расходом газа, т.е. расходу, обеспечивающему наибольший КПД при наибольшей полноте сжигания газа. В паспортах горелок указывают номинальную тепловую мощность.
  Максимальная тепловая мощность горелки должна превышать номинальную не более чем на 20%. Если номинальная тепловая мощность горелки по паспорту 10000 кДж/ч, то максимальная должна быть 12 000 кДж/ч.
  Еще одна важная характеристика горелки - предел регулирования тепловой мощности.
  В эксплуатации находится большое количество горелок различных конструкций. Общие требования для всех горелок: обеспечение полноты сгорания газа, устойчивость при изменениях тепловой мощности, надежность в эксплуатации, компактность, удобство при обслуживании.

среда, 7 марта 2018 г.

Рациональное сжигание газа и защита воздушного бассейна

  Защита воздушного бассейна от загрязнений - одна из важнейших проблем современности. Быстроразвивающиеся промышленность и транспорт приводят к загрязнению атмосферы газом, дымом, диоксидом углерода, парами хлора, пылью металлургических и других промышленных предприятий. Выхлопные газы автомобилей выделяют в атмосферу свинец и оксид углерода. Так, в одном литре этилированного бензина содержится 200...500 мг свинца.
  Перевод к крупных городах автомобилей на сжиженный газ во многом способствует очищению воздушного бассейна.
  Другой источник загрязнения воздушного бассейна - все возрастающие темпы потребления различного топлива. С ростом его потребления увеличивается количество выбрасываемых в атмосферу токсичных и канцерогенных веществ. Известно, что при сжигании топлива образуется вредные для здоровья человека вещества: сажа, зола, оксид углерода, оксид азота и др.
  Токсичным веществом является оксид азота NO, один из наиболее опасных загрязнителей воздушного бассейна. Оксид азота образуется в пламени, в зоне высоких температур, путем соединения азота с кислородом. При температурах 1500...1800 градусов С наблюдается наибольшая концентрация NO. Выбрасываемые в атмосферу горячие газы охлаждаются, и оксид азота превращается в диоксид азота NO2. Они, попадая в организм человека, поглощается кровью и оказывают вредное действие на органы дыхания. В нашей стране установлены предельно допустимые нормы концентрации оксидов азота в атмосфере населенных пунктов (0,085 мг/м.куб.). Продукты сгорания должны удаляться через дымовые трубы.
  При сжигании твердого и жидкого топлива могут образоваться канцерогенные вещества, которые способствуют возникновению раковых заболеваний. Особенно опасна тонкая пыль, адсорбирующая химические вещества воздуха и переносящая их в легкие человека.
  Сажа, образующаяся в процессе горения и несущая мельчайшие частицы угля, может быть носителем ароматических веществ, вызывающих различные тяжелые заболевания. В связи с этим перед человеком стоит важнейшая проблема борьбы с загрязнением воздушного бассейна.
  Одно из наиболее эффективных средств борьбы - замена твердого и жидкого топлива природным газом. С каждым годом тысячи промышленных и коммунальных предприятий переводят на газовое топливо.
  Большим достоинством природного газа является то, что при его сжигании не образуется твердые частицы. Если месторождения природных газов содержат сероводород, то его обязательно удаляют, чтобы исключить возможность образования оксидов серы.
  Отечественные газогорелочные устройства обеспечивают полноту сжигания газа и уменьшают концентрацию оксида углерода в продуктах сгорания до допустимых пределов. Существующие методы сжигания газа и конструкции горелок обеспечивают снижение количества образующихся оксидов азота до минимума.
  С целью сокращения выбросов вредных веществ в окружающую среду и улучшения очистки отходящих газов от вредных примесей повсеместно совершенствуют технологические процессы и транспортные средства, увеличивают выпуск высокоэффективных газопылеулавливающих аппаратов, водоочистного оборудования, а также приборов и автоматических станций контроля за состоянием окружающей среды.

вторник, 6 марта 2018 г.

Основные направления повышения эффективности использования газового топлива

  Эффективность использования газового топлива во многом зависит от правильности его выбора. Так, для высокотемпературных процессов целесообразно использовать газ с малым содержанием балласта и высокой жаропроизводительностью. В этом случае обеспечивается повышение производительности газовых установок и благодаря уменьшению продолжительности процесса сгорания газа и снижению потерь топлива в окружающую среду снижается удельный расход топлива на единицу выпускаемой продукции.
  Во многих технологических процессах, связанных с процессами сушки воздухом, применяется промежуточный теплоноситель - водяной пар. Получение водяного пара требует дополнительных источников теплоты, а между тем для сушки с успехом можно применять продукты сгорания газа, тогда отпадает необходимость специальных котельных установок и калориферов для нагрева воздуха паром.
  Известно, что при сжигании одного кубического метра газа выделяется два кубических метра водяного пара, уходящего с продуктами сгорания. Если теплоту конденсации этих водяных паров использовать для нагрева питательной воды, можно повысить КПД котельных установок.
  Другой резерв повышения эффективности использования газового топлива - сжигание газа в горелочных устройствах при больших тепловых напряжениях, что позволяет получать большее количество энергии в малом объеме.
  Многие технологические процессы протекают при высокой температуре уходящих газов. Эффективность использования газа в этом случае повышается, если использовать теплоту уходящих газов для производства пара, нагрева воды или воздуха. Каждая калория, вносимая в печь с подогретым воздухом, экономит более одной калории теплоты сжигаемого газа.
  Однако сооружение специальных рекуператоров хотя и приводит к значительной экономии газа, но требует дополнительных капиталовложений. Поэтому актуальной задачей является разработка методов снижения температуры уходящих газов и повышения эффективности использования газа, не связанных с применением дополнительного оборудования и капитальных вложений.
  Наиболее прогрессивен метод ступенчатого использования теплоты продуктов сгорания, основанный на сочетании работы низкотемпературных, среднетемпературных и высокотемпературных установок.
  Теплоту уходящих газов, отводимых от котлов и печей, можно использовать для отопления сушильных установок, а теплоту конденсации водяного пара, содержащегося в продуктах сгорания газа, отводимых из котлов или сушилок, - для нагрева воды в контактных экономайзерах. Таким образом, продукты сгорания, отводимые из высокотемпературных установок, используют в низкотемпературных процессах для отопления этих установок. КПД ступенчатых установок может быть доведен до 95%.
  Продукты сгорания газа можно с успехом использовать в качестве источника диоксида углерода и инертных газов. Большой интерес представляет применение диоксида углерода для ускорения развития растений и повышения урожая. Известно, что органическая масса растений образуется путем фотосинтеза из CO2 и H2O.
  В атмосфере воздуха содержится по объему около 0,03% CO2 и 21% O2. Многие растения до сих пор не приспособились к таким концентрациям CO2 и O2: их фотосинтезируемый аппарат и сейчас лучше работает при значительно более высоких концентрациях CO2, чем 0,03%, и при более низких, чем 21% концентрациях кислорода. Поэтому высокие показатели роста растений и повышения урожайности наблюдаются в искусственных условиях при повышении концентрации CO2 и снижении концентрации O2 в окружающем воздухе.
  Повышение концентрации диоксида углерода в теплицах с доведением его содержания в воздухе теплиц до 0,3% позволяет увеличить на 20% урожай огурцов и других овощей, на 50% - число цветов и ускорять их развитие, примерно на 100% повысить зеленую массу табака, чая, герани и других культур.
  Обогащение воздуха теплиц диоксидом углерода имеет важное значение, так как с ростом количества теплиц и применением гидропоники, при которой отсутствует выделение CO2 из почвы, потребность в диоксиде углерода значительно возрастает.
  Чистые продукты сгорания природного газа можно использовать для хранения в течение длительного срока фруктов и других пищевых продуктов.
  Продукты полного сгорания газа можно применять также в качестве инертных газов для изоляции огнеопасных и взрывоопасных материалов от контакта с воздухом, продувки взрывоопасной аппаратуры, газовых коммуникаций.

понедельник, 5 марта 2018 г.

Методы сжигания газа

  В зависимости от способа образования газовоздушной смеси методы сжигания газа можно разделить на диффузионный, смешанный и кинетический.
  При диффузионном методе сжигания к фронту горения газ поступает под давлением, а необходимый для горения воздух - из окружающего пространства за счет молекулярной или турбулентной диффузии. Смесеобразование здесь протекает одновременно с процессом горения, поэтому скорость процесса горения в основном определяется скоростью смесеобразования.
  Процесс горения начинается после образования контакта между газом и воздухом и газовоздушной смеси необходимого состава. К струе газа диффундирует воздух, а из струи газа в воздух - газ.
  Выделяемые продукты сгорания осложняют взаимную диффузию газа и воздуха, в результате чего горение протекает медленно с образованием частиц сажи. Этим и объясняется, что диффузионное горение характеризуется значительной длиной и светимостью пламени.
  Одним из достоинств диффузионного метода сжигания газа является возможность регулирования процесса горения в широком диапазоне. Процесс смесеобразования легко управляем при применении различных регулировочных элементов. Площадь и длину факела можно регулировать дроблением струи газа на отдельные факелы, изменением диаметр сопла горелки, регулированием давления газа и т.д.
  К преимуществам диффузионного метода сжигания относятся: высокая устойчивость пламени при изменении тепловых нагрузок, отсутствие проскока пламени, равномерность температуры по длине пламени. Недостатками этого метода являются: вероятность термического распада углеводородов, потребность в больших топочных объемах, низкая интенсивность горения, вероятность неполного сгорания газа.
  При смешанном методе сжигания горелка обеспечивает предварительное смешение газ только с частью воздуха, необходимого для полного сгорания газа, остальной воздух поступает из окружающей среды непосредственно к факелу. В этом случае сначала выгорает лишь часть газа, смешанная с первичным воздухом, а оставшаяся часть газа, разбавленная продуктами сгорания, выгорает после присоединения кислорода вторичного воздуха. В результате факел получается более коротким и менее светящимся, чем при диффузионном горении.
  При кинетическом методе сжигания к месту горения подается газовоздушная смесь, полностью подготовленная внутри горелки. Газовоздушная смесь сгорает в коротком факеле. Достоинство этого метода сжигания - малая вероятность химического недожога, небольшая длина пламени, высокая теплопроизводительность горелок. Недостаток - необходимость стабилизации газового пламени.

пятница, 2 марта 2018 г.

Стабилизация газового пламени

  Сжигание газа осуществляют в газовых горелках. При устойчивом горении в зоне горения устанавливается динамическое равновесие между стремлением пламени продвинуться навстречу движению газовоздушной смеси и стремлением потока продвинуть пламя от устья горелки в топку.
  Пределами устойчивости работы горелок являются отрыв и проскок пламени в горелку. При большой скорости движения газовоздушной смеси наблюдается полное отделение пламени от горелки и его погасание. Это явление называется отрывом пламени. При уменьшение подачи и скорости газовоздушной смеси стабильное горение нарушается, и пламя начинает втягиваться в горелку. Когда горение газовоздушной смеси происходит внутри горелки, возникает проскок пламени.
  Итак, для поддержания устойчивого горения необходимо обеспечить определенное соотношение между скоростью распространения пламени и скоростью поступления газовоздушной смеси к месту ее горения. На устойчивость пламени оказывает влияние также соотношение объемов газа и воздуха в газовоздушной смеси, причем чем больше газа, тем устойчивее пламя.
  При проскоке пламени горение газа происходит внутри горелки, что может привести к неполному сгоранию газа и образованию оксид углерода или потуханию пламени. При отрыве пламени газовоздушная смесь поступает в окружающее пространство, что может привести к взрыву газовоздушной смеси и другим опасным последствиям. Поэтому обеспечение стабильного горения газа - важнейшее условие его безопасного использования.
  Стабилизацию пламени газовоздушной смеси можно обеспечить с помощью специальных устройств. Необходимые условия при этом: поддержание скорости выхода газовоздушной смеси в безопасных пределах; поддержание температуры в зоне горения не ниже температуры воспламенения газовоздушной смеси.
  Когда в горелку поступает не газовоздушная смесь, а чистый газ, пламя наиболее устойчиво. Объясняется это тем, что в чистом газе пламя не распространяется и проскока пламени не возникает. Однако при резком увеличении скорости выхода газовоздушной смеси может произойти отрыв пламени, но и он менее вероятен, чем при подаче к факелу пламени газовоздушной смеси. При таком способе сжигания газа его подачу можно регулировать в широких пределах.
  Если к факелу подается газовоздушная смесь, содержащая 50...60% воздуха от теоретически необходимого для полного сжигания газа, то горение такой смеси будет менее устойчивым. Наименее устойчиво горение заранее подготовленных для полного сжигания газа газовоздушных смесей. Итак, чем меньше воздуха содержится в газовоздушной смеси, тем устойчивее процесс его сгорания.
  Стабилизация пламени при сжигании полностью подготовленной газовоздушной смеси достигается с помощью специальных устройств. Например, проскок пламени предотвращается, если сузить выходное отверстие для газовоздушной смеси. Увеличивающаяся при этом скорость выхода смеси не позволяет произойти проскоку. Пламя не распространяется через узкие щели, так как в них газовоздушная смесь быстро охлаждается. Если выходное отверстие выполнено в виде мелкое решетки, то это тоже предотвращает проскок пламени в горелку. Вероятность проскока пламени можно снизить, если охлаждать выходное отверстие носика горелки. Скорость распространения пламени в этом месте снижается, и температура смеси становится ниже температуры воспламенения.
  Отрыв пламени от горелки предотвращают установкой различных устройств. Например, у устья горелки помещают запальники для постоянного поджигания газовоздушной смеси.
  Наибольшее распространение получила стабилизация горения с помощью огнеупорных тоннелей. Газовоздушная смесь поступает из кратера горелки в цилиндрический тоннель, диаметр которого в 2 - 3 раза больше диаметра кратера горелки. При резком расширении тоннеля вокруг корневой части факела создается разрежение, что вызывает обратное движение части раскаленных продуктов горения. За счет этого температура газовоздушной смеси в корневой части факела повышается и обеспечивается устойчивая зона зажигания.